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Abstract 

New theorems are established for cages (or polyhedra) with trivalent vertices. One 
theorem says that all such cages have at least three Kekul6 structures (or perfect matchings). 
Thence, resonance generally appears as a possibility. Another theorem says that for 
every even vertex count >70 there is at least one cage of a "preferable" subclass, while 
for vertex count <70 the sole preferable cage is that of the truncated icosahedron. 
Thence, the unique role of the buckminsterfullerene structure for C6o is mathematically 
indicated. 

1. Introduction, statement and discussion 

Much scientific interest has arisen with the recent proposal [1] of  a novel C60 
species and its subsequent isolation [2]. The proposed "uniquely elegant" truncated 
icosahedral structure of  fig. 1 thence has after a few years been verified. Not only 

Fig. 1. The ~aancated icosahedron. 

is there now the possibility of a new field of polyhedral structures, but also such 
carbon cages may be of relevance in important natural circumstances, such as 
(terrestrial) soot formation [3] or the occurrence [4] in dark interstellar clouds. 
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Numerous theoretical questions arise as to the possibilities for suitable chemical 
structures and their characteristics. In attending to these questions, we have [5] 
focused attention on the species meeting certain criteria: 

(1) threefold sigma-valency of every carbon; 

(2) correspondence of structure to a polyhedron; 

(3) avoidance of all rings other than those of sizes 5 and 6; 

(4) minimization of the number p of abutting pairs of pentagonal rings; 

(5) optimization of uniformity of Gaussian curvature; and 

(6) correspondence to higher symmetry. 

Criteria (2) and (3) arise from an interplay between chemical preferences and 
mathematical constraints. A cage satisfying criteria (1) and (2) is termed trivalent, 
and if also it satisfies (3), then it is termed amenable. Condition (4) arises [5] in 
chemistry from extended Htickel rule ideas, and is supported by calculations. If an 
amenable cage also satisfies (4), it is termed preferable. Conditions (5) and (6) are 
"more geometric" than the others and play little role in the present results. 

Here we prove or note three results: 

THEOREM A 

All trivalent cages admit at least three Kekul6 structures. 

THEOREM B 

Amenable cages occur with every even number of vertices >24, the sole 
amenable cage with fewer than 24 vertices being the dodecahedron. 

THEOREM C 

Preferable cages occur with every even number of vertices >70, the sole 
preferable cage with fewer than 70 vertices being the truncated icosahedron. 

These theorems may be appreciated more fully, especially with regard to the 
comprehensiveness of B and C, if it is noted that all trivalent polyhedra have an 
even number of vertices. This is readily seen on using the number v of vertices and 
the number e of edges to count the vertex-edge connections in two ways to give 
3v = 2e (whence v must be even). Also, theorem A may be viewed to imply that 
v is even. Perhaps, too, it should be noted that Kekuld structures are often given 
other names: 1-factors or perfect matchings in mathematics (graph theory); dimer 
coverings in statistical mechanics; and perfect pairings in some recent work concerning 
high-temperature superconductors. 

Theorem A tells us that "n-electron" resonance is conceivable for all such 
cages, the quantitative value depending on detailed electronic structure computations. 
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Particularly, theorem A implies that the standard (and best tested) version of 
"conjugated-circuits" theory is applicable. 

Theorem B has previously been proved by Grtinbaum and Motzkin [7], so we 
will not repeat the proof here. This theorem is relevant in indicating the range of 
possibilities addressed in our detailed cage generation scheme [6]. 

Theorem C identifies the buckminsterfullerene truncated icosahedron as a 
singular mathematico-chemical structure, in support of the enthusiasm shown by 
Kroto et al. [1] in describing it as "uniquely elegant". Theorem C also identifies 
the next largest preferable cage as being in correspondence with the next most 
experimentally noted [1,2] species (C70), much as earlier [5] surmised. Further, it 
allows preferable cages of any larger even size. 

2. Mathematical explanation and rigorization 

There are a few mathematical points which deserve further note. First, in 
speaking of different polyhedra we should actually more properly be speaking of 
equivalence classes of polyhedra. Two polyhedra are combinatorially equivalent 
whenever the graphical connection patterns of their edges are the same. More 
precisely, two polyhedra P and P '  are combinatorially equivalent [8] whenever 
there are three one-to-one mappings from the vertex, edge and face sets of P to the 
corresponding sets of P '  such that incidence relations are conserved: a vertex, edge 
or face a of P is incident to (or touches upon)/3 of P if and only if the images of 

and /3 are incident in P'. 
Next, unique labels for (combinatorial equivalence classes) of polyhedra are 

found in their Schlegel graphs, such a graph being that with vertices and edges 
corresponding to those of the polyhedron. With the standard convention that polyhedra 
are homeomorphic to the sphere, the corresponding Schlegel graph can be embedded 
on the surface of a sphere. Punching a small hole through this surface so that no 
components of the graph are touched, then topologically deforming the remnant 
surface to a disc, one then recognizes the Schlegel graph to be planar. This process 
is reversible and the planar embedding is topologically unique [9] up to the choice 
of which face through which the hole is punched. 

Finally, we wish to speak synomonously of cages and polyhedra. By a cage, 
we think of the (sigma-bonded) chemical network of a type such that it corresponds 
to a (molecular) chemical graph which is 3-connected and planar. (A graph is 3- 
connected if at least three edges must be cut in order to break it into two pieces.) 
Now in our present nomenclature, Steinitz's theorem [8] says: a graph is a Schlegel 
graph if and only if it is a cage graph. Thence, our co-identification of cages and 
(combinatorial equivalence classes of) polyhedra is justified. 

3. Proof of  theorem A 

Theorem A may be established by way of the famous four-color theorem [10]. 
We assume this latter result in a special form: 
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For any trivalent polyhedron there exists at least one coloring of the faces 
with but four colors such that no two adjacent faces are of the same color. 

For the sake of discussion, let the four colors be red, yellow, green and blue, 
denoted by R, Y, G and B. Then, granted a coloring asserted by the theorem, there 
is exactly one color missing at each vertex. If the missing color at a vertex i is G 
or B, then let the edge between the incident R- and Y-colored faces be chosen to 
be double. However, if the missing color at a vertex i is R or Y, then let the edge 
between the incident G- or B-colored faces be chosen to be double. Thence, one 
has exactly one double bond into each vertex. This Kekul6 structure clearly is 
uniquely associated to the partitioning of the colors into sets {R, Y} and {G, B}. 
The two further partitionings {R, G} @ {Y, B} and {R, B} @ {Y, G} yield two 
further Kekul6 structures so that theorem A is proved. 

Actually, somewhat more general conclusions apply. The four-color theorem 
applies in somewhat more general circumstances: to trivalent 2-connected planar 
graphs. Also, one sees from the proof we have presented that no edge of a cage is 
always single or always double. Finally, the idea of the proof we have presented 
is implicit in an old work by Tait [11]. 

4. Proof of theorem C 

The main idea of approach to this proof is to identify several different "cap" 
structures with the same boundaries and join them together by some number of 
"strands" or "belts", as indicated in fig. 2. Each strand will turn out to add 12 
vertices, so if requisite caps can be identified, whole infinite sequences of cages for 
all larger vertex counts will be obtained. The approach is reminiscent of that taken 

Fig. 2. The general idea for the construction 
of (modulo-12) sequences of preferable cages. 
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by Gri inbaum and Motzkin  [7] in proving theorem B. Also, it can be ment ioned  that  
theorems B and C are examples of  a general  class described [11] as o f  "Eberhard  
type".  

The four  "caps"  we utlize are shown in fig. 3, while the strand, two or  more 
copies of  which are to intervene between the two caps, is shown in fig. 4. Note that  
any number  n > 2 o f  strands may  be fused together before fusion to the two caps 

A B D 
C 

Fig. 3. The four types of caps used in the construction of the (modulo-12) 
sequences of preferable cages. They have, respectively, 36, 42, 46 and 50 vertices. 

Fig. 4. The Schlegel-graph representation of the strands to be fused between two 
caps. Note that the belt of fig. 2 entails two such mutually fused strands. (Also 
note that in the fusion process, one needs to avoid countng some vertices twice.) 

to yield a preferable polyhedron.  Each strand added after the first two adds 12 more 
vertices. Thus,  the total number  of  vertices in such a polyhedron is the sum of  the 
numbers  in each of  the two caps and 12(n - 1). Each pair o f  caps of  fig. 3 then gives 
rise to a modulo-12 class o f  polyhedra.  A set of  such pairs for such disjoint  classes 
together  with their vertex counts are: 

AA: v =  72 + 1 2 ( n -  2), 

AD: v =  86 + 1 2 ( n -  2), 

BC: v =  88 + 1 2 ( n -  2), 

AB: v =  78 + 1 2 ( n -  2), 

CC: v =  92 + 1 2 ( n -  2), 

AC: v =  82 + 1 2 ( n -  2). 
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The vertex counts here have modulo-12 values of  0, 2, 4, 6, 8, and 10, respectively. 
Thence we have specified examples for all vertex counts of  theorem C except 
v = 80, 76, 74, 70 and 60. Examples for 80, 70 and 60 may be obtained via a similar 
construction with two caps as in fig. 5(a) along with 3, 2 or 1 strands as in fig. 5(b) 

(a) (b) 

Fig. 5. A "fivefold" cap and associated strand 
that may be used to construct preferable cages. 

V= V4 V =  76 

Fig. 6. Preferable cages of 76 and 74 vertices. 

fused between. Examples of cages with v = 76 and 74 obtained via the program of  
our earlier paper [6] are shown in fig. 6. The sole v = 70 preferable cage has been 
mentioned several times previously, as in ref. [5], and v =  60 is of  course the 
truncated icosahedron. That this last is the only preferable polyhedron with v < 60 
was proved in ref. [5]. The absence of  preferable cages with v = 62, 64, 66 and 68 
was established via the program of our earlier paper [6] (the requisite manipulations 
having also been done by hand for v = 62, 64 and 66). 
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